M1.(a) 0.943 g water (M1)

If Mr of NiSO₄ wrong, can allow M1 and M3 from method 1 i.e. max 2

NiSO₄
$$H_2O$$

 $\frac{1.344}{154.8}$ $(M2)$ $\frac{0.943}{18}$ $(M3)$
 (8.68×10^{-3}) 0.052)
1 6 or $x = \underline{6}$ $(M4)$
Allow $Mr = 155$

Allow other methods e.g.

$$M_{\rm r}$$
 (NiSO₄) = 58.7 + 32.1 + 64.0 = 154.8
 $n({\rm NiSO_4}) = \frac{\frac{1.344}{154.8}}{154.8} = 0.008682 \text{ mol} \quad ({\rm M1})$
 $M_{\rm r}$ (NiSO₄. x H₂O) = $\frac{2.287}{0.008682} = (263.4) ({\rm M2})$
so $18x = 263.4 - 154.8 = (108.6) \quad ({\rm M3})$
so $x = \frac{108.6}{18} = \frac{6}{18} \quad ({\rm M4})$

If using alternative method and Mr of NiSO₄ wrong, allow ecf to score M2 and M3 only i.e. max 2

(b) re-heat

Heat to constant mass = 2 marks

check that mass is unchanged

M2 dependent on M1

Allow as alternative:

M1: record an IR spectrum

M2: peak between 3230 and 3550 (cm⁻¹)

[6]

4

M2. Mass of crucible and boric acid on the y-axis

Axes must be labelled but do not penalise lack of units (unless incorrect).

1

Suitable scale used

Plotted points must cover at least half the printed grid. (both directions).

1

All points plotted correctly

Allow + / - one small square.

1

Suitable line drawn

Good best-fit line based on their points (+ / - one small square).

Do not award if kinked, doubled or very thick line.

[4]

1

M3.(a) (i) M1 - M_r calcium phosphate = 310(.3)

If M_r wrong, lose M1 and M5.

1

M2 - Moles calcium phosphate = $\frac{7.26}{M1}$ (= 0.0234)

0.0234 moles can score M1 and M2.

7.26

If M, incorrect, can score M2 for M1.

Allow M2 and / or M3 to 2 significant figures here but will lose M5 if answer not 1.23.

M3 - Moles phosphoric acid = $2 \times 0.0234 = 0.0468$ Allow student's $M2 \times 2$. If not multiplied by 2 then lose M3 and M5.

1

M4 - Vol phosphoric acid = 0.038(0) dm³

If not 0.038(0) dm³ then lose M4 and M5.

1

Conc phosphoric acid = $\frac{0.0468}{0.038(0)}$

 $M5 = 1.23 \text{ (mol dm}^{-3}\text{)}$

This answer only – unless arithmetic or transcription error that has been penalised by 1 mark.

Allow no units but incorrect units loses M5.

1

(ii)
$$\frac{492.3}{688.3} \times 100$$
 OR $\frac{492}{688} \times 100$

1 mark for both M, correctly placed.

= 71.5%

2

(b)
$$3Ca(OH)_2 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 6H_2O$$
Allow multiples.

1

(c) Ca
$$\frac{1.67}{40.1}$$
 $\begin{pmatrix} H \\ 0.17 \\ 1 \end{pmatrix}$ $\begin{pmatrix} P \\ 2.59 \\ 31 \end{pmatrix}$ $\begin{pmatrix} 5.33 \\ 16 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 5.33 \\ 16 \end{pmatrix}$ $\begin{pmatrix} 0.17 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 0.084 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 0.333 \\ 8 \end{pmatrix}$

If x = 2 with no working, allow M4 only.

Ca = 1.67 g (M1).

Mark for dividing by correct A, in Ca and P (M2). If M1 incorrect can only score M2.

1

Correct ratio (M3).

1

$$CaH_4P_2O_8$$
 OR $Ca(H_2PO_4)_2$ **OR** $x = 2$ Value of x or correct formula (M4).

1

Alternative

Ca H₂PO₄

Ca = 1.67 g (M1).

1.67 40.1 97.0

Mark for dividing by correct A, / M, in Ca and H_2PO_4 (M2).

If M1 incorrect can only score M2.

Correct ratio (M3).

 $CaH_4P_2O_8$ **OR** $Ca(H_2PO_4)_2$ **OR** x = 2

Value of x or correct formula (M4).

[12]

M4.(a) 2,2,4-trimethylpentane

1

(b) 5

1

(c) $C_{20}H_{42} \longrightarrow C_8H_{18} + 2C_3H_6 + 3C_2H_4$

1

(d) Mainly alkenes formed

1

1

(f)

1

(g)
$$C_8H_{17}^{35}CI = 96.0 + 17.0 + 35.0 = 148.0$$

and $C_8H_{17}^{37}CI = 96.0 + 17.0 + 37.0 = 150.0$
Both required

1

$$(1.5 \times 148.0) + (1.0 \times 150.0)$$

 M_r of this C₈H₁₇Cl 2.5 2.5 = 148.8

1

(h)
$$\frac{24.6}{12}$$
 $\frac{2.56}{1}$ $\frac{72.8}{35.5}$ = 2.05 : 2.56 : 2.05

Simplest ratio = $\frac{2.05}{2.05} : \frac{2.56}{2.05} : \frac{2.05}{2.05}$

= 1:1.25:1

1

Whole number ratio $(\times 4) = 4:5:4$

$$MF = C_8H_{10}CI_8$$

[12]

Percentage of oxygen by mass = 100 - 40.9 - 4.5 = 54.6**M5.**(a)

1

= 3.41 = 4.5

= 3.41

1

Nearest whole number ratio = 1×3 1.32×3 1×3

Nearest integer ratio = 3 : 4 :

Empirical formula C₃H₄O₃

Empirical formula mass = 88 = molecular formula mass

Therefore, molecular formula is same as the empirical formula - C₃H₄O₃

1

1

(b)
$$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$$

1

(c) Advantage – ethanol is produced at a faster rate Disadvantage – more energy is used / required in the reaction

1

(d) Air gets in / oxidation occurs

1

(e) Alcohol OH absorption in different place (3230–3550 cm⁻¹) from acid OH absorption (2500–3000 cm⁻¹)

1

The C=O in acids has an absorption at 1680–1750 cm⁻¹

[10]