M1.(a) $\quad 0.943 \mathrm{~g}$ water (M1) If Mr of NiSO_{4} wrong, can allow M1 and M3 from method 1 i.e. $\max 2$

Allow other methods e.g.
$M_{\mathrm{r}}\left(\mathrm{NiSO}_{4}\right)=58.7+32.1+64.0=154.8$
$n\left(\mathrm{NiSO}_{4}\right)=\frac{1.344}{154.8}=0.008682 \mathrm{~mol} \quad(\mathrm{M} 1)$
$M_{\mathrm{r}}\left(\mathrm{NiSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)=\frac{2.287}{0.008682}=(263.4)(\mathrm{M} 2)$
so $18 x=263.4-154.8=(108.6) \quad(M 3)$
so $x=\frac{\frac{108.6}{18}}{}=\underline{6} \quad$ (M4)

If using alternative method and Mr of NiSO_{4} wrong, allow ecf to score M2 and M3 only i.e. max 2
(b) re-heat

Heat to constant mass = 2 marks
check that mass is unchanged
M2 dependent on M1
Allow as alternative:
M1: record an IR spectrum
M2: peak between 3230 and $3550\left(\mathrm{~cm}^{-1}\right)$

M2.Mass of crucible and boric acid on the y-axis
Axes must be labelled but do not penalise lack of units (unless incorrect).

Suitable scale used
Plotted points must cover at least half the printed grid.(both directions).

All points plotted correctly
Allow + / - one small square.

Suitable line drawn
Good best-fit line based on their points (+ / - one small square).
Do not award if kinked, doubled or very thick line.

M3.(a) (i) \quad M1 $-M_{r}$ calcium phosphate $=310$ (.3)
If M_{r} wrong, lose M1 and M5.
$\mathrm{M} 2-$ Moles calcium phosphate $=\frac{7.26}{\mathrm{M} 1} \quad(=0.0234)$
0.0234 moles can score M1 and M2.

If M_{r} incorrect, can score $M 2$ for $\frac{7.26}{M 1}$.

Allow M2 and / or M3 to 2 significant figures here but will lose M5 if answer not 1.23.

M3 - Moles phosphoric acid $=2 \times 0.0234=0.0468$
 Allow student's M2 $\times 2$. If not multiplied by 2 then lose M3 and M5.

> M4 - Vol phosphoric acid $=0.038(0) \mathrm{dm}^{3}$
> \quad If not $0.038(0) \mathrm{dm}^{3}$ then lose $M 4$ and $M 5$.

Conc phosphoric acid $=\frac{0.0468}{0.038(0)}$
$\mathrm{M} 5=1.23\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
This answer only - unless arithmetic or transcription error that has been penalised by 1 mark.
Allow no units but incorrect units loses M5.
(ii) $\frac{492.3}{688.3} \times 100$ OR $\frac{492}{688} \times 100$

1 mark for both M_{r} correctly placed.
= 71.5\%
(b) $\quad 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Allow multiples.
(c)

If $x=2$ with no working, allow M4 only.
$C a=1.67 \mathrm{~g}$ (M1).

Mark for dividing by correct A_{t} in Ca and P (M2).
If M1 incorrect can only score M2.

Correct ratio (M3).

| $\mathrm{CaH}_{4} \mathrm{P}_{2} \mathrm{O}_{8}$ | $\mathrm{OR} \quad \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \quad$ OR $\quad x=2$ |
| :--- | :--- | :--- |
| | Value of x or correct formula (M4). |

Alternative
Ca
$\mathrm{H}_{2} \mathrm{PO}_{4}$
$C a=1.67 \mathrm{~g}(\mathrm{M} 1)$.
$\begin{array}{ll}\frac{1.67}{40.1} & \frac{8.09}{97.0}\end{array}$
Mark for dividing by correct A_{r} / M_{r} in Ca and $\mathrm{H}_{2} \mathrm{PO}_{4}(M 2)$.
If M1 incorrect can only score M2.
$=0.042 \quad 0.083$
$1 \quad 2$
Correct ratio (M3).
$\mathrm{CaH}_{4} \mathrm{P}_{2} \mathrm{O}_{8} \quad$ OR $\quad \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \quad$ OR $\quad \mathrm{x}=2$
Value of x or correct formula (M4).

M4.(a) 2,2,4-trimethylpentane
(b) 5
(c) $\mathrm{C}_{20} \mathrm{H}_{42} \longrightarrow{ }_{\mathrm{C}_{8} \mathrm{H}_{18}}+2 \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{C}_{2} \mathrm{H}_{4}$
(d) Mainly alkenes formed
(e) 4 (monochloro isomers)
(f)

(g) $\quad \mathrm{C}_{8} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}=96.0+17.0+35.0=148.0$ and $\mathrm{C}_{8} \mathrm{H}_{17}{ }^{37} \mathrm{Cl}=96.0+17.0+37.0=150.0$

Both required

Whole number ratio $(\times 4)=4: 5: 4$

$$
\mathrm{MF}=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{8}
$$

M5.(a) Percentage of oxygen by mass $=100-40.9-4.5=54.6$
C H
0
\%
Divide by $A_{\text {s }}$

$$
\frac{40.9}{12}
$$

$\frac{4.5}{1}$
$\frac{54.6}{16}$

$$
=3.41 \quad=4.5 \quad=3.41
$$

Divide by smallest $=$	$\frac{3.41}{3.41}=1$	$\frac{4.5}{3.41}=1.32$	$\frac{3.41}{3.41}=1$
Nearest whole number ratio $=1 \times 3$	1.32×3	1×3	
	$=3: 3.96: 3$		
Nearest integer ratio $=3$	$:$	4	$:$

Empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
Empirical formula mass $=88=$ molecular formula mass
Therefore, molecular formula is same as the empirical formula - $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
(c) Advantage - ethanol is produced at a faster rate

$$
\text { Page } 7
$$

Disadvantage - more energy is used / required in the reaction
(d) Air gets in / oxidation occurs
(e) Alcohol OH absorption in different place (3230-3550 cm^{-1}) from acid OH absorption (2500-3000 cm^{-1})

The $\mathrm{C}=\mathrm{O}$ in acids has an absorption at $1680-1750 \mathrm{~cm}^{-1}$

